0 有用
0 下载
解析Midjourney的成长之路

文件列表(压缩包大小 1.41M)

免费

概述

我们将“AI+传媒”的研究框架体系定义为“通用大模型”+“行业小样本”的技术架构,“AI+传媒”在应用层表现效力优劣的 关键取决于通用大模型对垂直应用的适配程度及迭代速度,

1、适配程度是指:多模态的输入及输出是否匹配应用层的输入及输出。比如GPT-4属于“图+文”多模态输入+“文”单模态输 出,因此输入模态为“图或文”且输出模态为“文”的垂直应用更适配GPT-4。

2、迭代速度是指:应用层产生的“行业小样本”的数据量是否匹配大模型的迭代要求。根据我们对GPT模型的理解,比如Bing AI产生的“行业小样本”源自Bing的搜索结果,ChatGPT产生的“行业小样本”源自用户的反馈和互动。因此我们认为,对于超 出GPT所使用的预训练数据库范围(2021年9月前)的事实性表述,Bing AI反馈的是搜索的结果,ChatGPT反馈的是用户主动的 观点,Bing AI反馈的效果比ChatGPT更好。

我们认为“行业小样本”的价值取决于数据数量及数据质量,数量大且质量高(多模态)的应用场景复用及迭代AI能力的效力 更强,因此更进一步理解我们的研究框架,我们将“行业小样本”的结构分层(中层小模型+下层应用及内容),并将“行业小 样本”的结合方式分类(调用+训练):

1、“行业小样本”的数据集来自小模型或应用及内容:AI产业链包括上层大模型、中层小模型、下层应用及内容,包括应用及 内容直接接入大模型或通过小模型接入大模型两种方式,即“大模型+应用及内容”或“大模型+小模型+应用或内容”,其中具 备特定功能的AIGC软件产品及MaaS我们理解为“小模型”+“应用”的技术范式,本身具备较高质量的AI能力,若接入匹配的多 模态大模型,有望实现能力上的质变突破。

来源:上海证券

理工酷提示:

如果遇到文件不能下载或其他产品问题,请添加管理员微信:ligongku001,并备注:产品反馈

评论(0)

0/250

免费 登录即可免费下载

·圈子

位酷友已加入

吴山留顾

积分 • 57438

圈子: 人工智能
标签:
gpt人工智能研究报告技术报告计算机视觉midjourney
文件编号:156012
上传时间:2023-05-06
文件大小:1.41M