文件列表(压缩包大小 3.27M)
免费
概述
2022年是人工智能(AI)的一个分水岭,ChatGPT,DALL.E和Lensa等几个面向消费者的应用程序发布了,它们的共同主题是使用生成式人工智能-这是人工智能领域的一次范式转换。当前的人工智能使用模式检测或遵循规则来帮助分析数据和做出预测,而Transformer架构的出现则开启了一个新领域:生成式人工智能。 生成式人工智能可以通过创建类似于其所训练的数据的新颖数据来模仿人类的创造过程,将人工智能从“赋能者”提升为(潜在的)“协作者”。实际上,Gartner估计,到2025年,超过10%的数据将是由人工智能生成的,预示着一个新时代—人类与(WithTM)机器协作的时代—的到来。
虽然目前生成式人工智能主要应用于面向消费者的产品,但它也有潜力为企业工作流程增加情景感知和类似于人类的决策能力,并彻底改变我们的商业模式。例如,谷歌的客服中心人工智能(CCAI)旨在帮助实现采用自然语言进行客户服务交互,而NVIDIA的BioNeMo则可以加速新药的研发。这些解决方案可能只是刚刚开始产生影响,我们将看到更多基于生成式人工智能的解决方案应用到企业中,改变我们的商业模式。
生成式人工智能已经引起了传统风险投资、并购等方面以及新兴生态系统合作伙伴关系的兴趣。仅在2022年,风险投资公司就投资了超过20亿美元,而技术领先企业也进行了重大投资,例如微软对OpenAI的100亿美元投资和谷歌对Anthropic的3亿美元投资。这显示出生成式人工智能作为一个新兴领域的巨大潜力。
随着生成式人工智能的不断推广和应用,其产生的深远影响和潜在价值正在加速推动从实验到消费者领域再很快进入企业领域的应用。尽管媒体关注的大多数是消费者应用,但这种技术的应用机会是广泛的,并且已经有一些应用案例。尽管如此,人们仍然存在疑问,即个人和企业如何利用生成式人工智能来实现效率提升、产品改进、新体验或业务变革。我们同样只是刚刚开始探究生成式人工智能如何商业化以及如何建立可持续的商业模式。
来源:德勤
如果遇到文件不能下载或其他产品问题,请添加管理员微信:ligongku001,并备注:产品反馈
评论(0)