基于CNN-RNN的中文文本分类
文件列表(压缩包大小 410.19K)
免费
概述
使用卷积神经网络以及循环神经网络进行中文文本分类
CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification
还可以去读dennybritz大牛的博客:Implementing a CNN for Text Classification in TensorFlow
以及字符级CNN的论文:Character-level Convolutional Networks for Text Classification
本文是基于TensorFlow在中文数据集上的简化实现,使用了字符级CNN和RNN对中文文本进行分类,达到了较好的效果。
文中所使用的Conv1D与论文中有些不同,详细参考官方文档:tf.nn.conv1d
使用THUCNews的一个子集进行训练与测试,数据集请自行到THUCTC:一个高效的中文文本分类工具包下载,请遵循数据提供方的开源协议。
本次训练使用了其中的10个分类,每个分类6500条数据。
类别如下:
体育, 财经, 房产, 家居, 教育, 科技, 时尚, 时政, 游戏, 娱乐
这个子集可以在此下载:链接: https://pan.baidu.com/s/1hugrfRu 密码: qfud
数据集划分如下:
从原数据集生成子集的过程请参看helper下的两个脚本。其中,copy_data.sh用于从每个分类拷贝6500个文件,cnews_group.py用于将多个文件整合到一个文件中。执行该文件后,得到三个数据文件:
data/cnews_loader.py为数据的预处理文件。
经过数据预处理,数据的格式如下:
CNN可配置的参数如下所示,在cnn_model.py中。
class TCNNConfig(object):
"""CNN配置参数"""
embedding_dim = 64 # 词向量维度
seq_length = 600 # 序列长度
num_classes = 10 # 类别数
num_filters = 128 # 卷积核数目
kernel_size = 5 # 卷积核尺寸
vocab_size = 5000 # 词汇表达小
hidden_dim = 128 # 全连接层神经元
dropout_keep_prob = 0.5 # dropout保留比例
learning_rate = 1e-3 # 学习率
batch_size = 64 # 每批训练大小
num_epochs = 10 # 总迭代轮次
print_per_batch = 100 # 每多少轮输出一次结果
save_per_batch = 10 # 每多少轮存入tensorboard
具体参看cnn_model.py的实现。
大致结构如下:
运行 python run_cnn.py train,可以开始训练。
若之前进行过训练,请把tensorboard/textcnn删除,避免TensorBoard多次训练结果重叠。
Configuring CNN model...
Configuring TensorBoard and Saver...
Loading training and validation data...
Time usage: 0:00:14
Training and evaluating...
Epoch: 1
Iter: 0, Train Loss: 2.3, Train Acc: 10.94%, Val Loss: 2.3, Val Acc: 8.92%, Time: 0:00:01 *
Iter: 100, Train Loss: 0.88, Train Acc: 73.44%, Val Loss: 1.2, Val Acc: 68.46%, Time: 0:00:04 *
Iter: 200, Train Loss: 0.38, Train Acc: 92.19%, Val Loss: 0.75, Val Acc: 77.32%, Time: 0:00:07 *
Iter: 300, Train Loss: 0.22, Train Acc: 92.19%, Val Loss: 0.46, Val Acc: 87.08%, Time: 0:00:09 *
Iter: 400, Train Loss: 0.24, Train Acc: 90.62%, Val Loss: 0.4, Val Acc: 88.62%, Time: 0:00:12 *
Iter: 500, Train Loss: 0.16, Train Acc: 96.88%, Val Loss: 0.36, Val Acc: 90.38%, Time: 0:00:15 *
Iter: 600, Train Loss: 0.084, Train Acc: 96.88%, Val Loss: 0.35, Val Acc: 91.36%, Time: 0:00:17 *
Iter: 700, Train Loss: 0.21, Train Acc: 93.75%, Val Loss: 0.26, Val Acc: 92.58%, Time: 0:00:20 *
Epoch: 2
Iter: 800, Train Loss: 0.07, Train Acc: 98.44%, Val Loss: 0.24, Val Acc: 94.12%, Time: 0:00:23 *
Iter: 900, Train Loss: 0.092, Train Acc: 96.88%, Val Loss: 0.27, Val Acc: 92.86%, Time: 0:00:25
Iter: 1000, Train Loss: 0.17, Train Acc: 95.31%, Val Loss: 0.28, Val Acc: 92.82%, Time: 0:00:28
Iter: 1100, Train Loss: 0.2, Train Acc: 93.75%, Val Loss: 0.23, Val Acc: 93.26%, Time: 0:00:31
Iter: 1200, Train Loss: 0.081, Train Acc: 98.44%, Val Loss: 0.25, Val Acc: 92.96%, Time: 0:00:33
Iter: 1300, Train Loss: 0.052, Train Acc: 100.00%, Val Loss: 0.24, Val Acc: 93.58%, Time: 0:00:36
Iter: 1400, Train Loss: 0.1, Train Acc: 95.31%, Val Loss: 0.22, Val Acc: 94.12%, Time: 0:00:39
Iter: 1500, Train Loss: 0.12, Train Acc: 98.44%, Val Loss: 0.23, Val Acc: 93.58%, Time: 0:00:41
Epoch: 3
Iter: 1600, Train Loss: 0.1, Train Acc: 96.88%, Val Loss: 0.26, Val Acc: 92.34%, Time: 0:00:44
Iter: 1700, Train Loss: 0.018, Train Acc: 100.00%, Val Loss: 0.22, Val Acc: 93.46%, Time: 0:00:47
Iter: 1800, Train Loss: 0.036, Train Acc: 100.00%, Val Loss: 0.28, Val Acc: 92.72%, Time: 0:00:50
No optimization for a long time, auto-stopping...
在验证集上的最佳效果为94.12%,且只经过了3轮迭代就已经停止。
准确率和误差如图所示:
运行 python run_cnn.py test 在测试集上进行测试。
在测试集上的准确率达到了96.04%,且各类的precision, recall和f1-score都超过了0.9。
从混淆矩阵也可以看出分类效果非常优秀。
RNN可配置的参数如下所示,在rnn_model.py中。
class TRNNConfig(object):
"""RNN配置参数"""
# 模型参数
embedding_dim = 64 # 词向量维度
seq_length = 600 # 序列长度
num_classes = 10 # 类别数
vocab_size = 5000 # 词汇表达小
num_layers= 2 # 隐藏层层数
hidden_dim = 128 # 隐藏层神经元
rnn = 'gru' # lstm 或 gru
dropout_keep_prob = 0.8 # dropout保留比例
learning_rate = 1e-3 # 学习率
batch_size = 128 # 每批训练大小
num_epochs = 10 # 总迭代轮次
print_per_batch = 100 # 每多少轮输出一次结果
save_per_batch = 10 # 每多少轮存入tensorboard
具体参看rnn_model.py的实现。
大致结构如下:
这部分的代码与 run_cnn.py极为相似,只需要将模型和部分目录稍微修改。
运行 python run_rnn.py train,可以开始训练。
若之前进行过训练,请把tensorboard/textrnn删除,避免TensorBoard多次训练结果重叠。
运行结果:
Configuring RNN model... Configuring TensorBoard and Saver... Loading training and validation data... Time usage: 0:00:14 Training and evaluating... Epoch: 1 Iter: 0, Train Loss: 2.3, Train Acc: 8.59%, Val Loss: 2.3, Val Acc: 11.96%, Time: 0:00:08 * Iter: 100, Train Loss: 0.95, Train Acc: 64.06%, Val Loss: 1.3, Val Acc: 53.06%, Time: 0:01:15 * Iter: 200, Train Loss: 0.61, Train Acc: 79.69%, Val Loss: 0.94, Val Acc: 69.88%, Time: 0:02:22 * Iter: 300, Train Loss: 0.49, Train Acc: 85.16%, Val Loss: 0.63, Val Acc: 81.44%, Time: 0:03:29 * Epoch: 2 Iter: 400, Train Loss: 0.23, Train Acc: 92.97%, Val Loss: 0.6, Val Acc: 82.86%, Time: 0:04:36 * Iter: 500, Train Loss: 0.27, Train Acc: 92.97%, Val Loss: 0.47, Val Acc: 86.72%, Time: 0:05:43 * Iter: 600, Train Loss: 0.13, Train Acc: 98.44%, Val Loss: 0.43, Val Acc: 87.46%, Time: 0:06:50 * Iter: 700, Train Loss: 0.24, Train Acc: 91.41%, Val Loss: 0.46, Val Acc: 87.12%, Time: 0:07:57 Epoch: 3 Iter: 800, Train Loss: 0.11, Train Acc: 96.09%, Val Loss: 0.49, Val Acc: 87.02%, Time: 0:09:03 Iter: 900, Train Loss: 0.15, Train Acc: 96.09%, Val Loss: 0.55, Val Acc: 85.86%, Time: 0:10:10 Iter: 1000, Train Loss: 0.17, Train Acc: 96.09%, Val Loss: 0.43, Val Acc: 89.44%, Time: 0:11:18 * Iter: 1100, Train Loss: 0.25, Train Acc: 93.75%, Val Loss: 0.42, Val Acc: 88.98%, Time: 0:12:25 Epoch: 4 Iter: 1200, Train Loss: 0.14, Train Acc: 96.09%, Val Loss: 0.39, Val Acc: 89.82%, Time: 0:13:32 * Iter: 1300, Train Loss: 0.2, Train Acc: 96.09%, Val Loss: 0.43, Val Acc: 88.68%, Time: 0:14:38 Iter: 1400, Train Loss: 0.012, Train Acc: 100.00%, Val Loss: 0.37, Val Acc: 90.58%, Time: 0:15:45 * Iter: 1500, Train Loss: 0.15, Train Acc: 96.88%, Val Loss: 0.39, Val Acc: 90.58%, Time: 0:16:52 Epoch: 5 Iter: 1600, Train Loss: 0.075, Train Acc: 97.66%, Val Loss: 0.41, Val Acc: 89.90%, Time: 0:17:59 Iter: 1700, Train Loss: 0.042, Train Acc: 98.44%, Val Loss: 0.41, Val Acc: 90.08%, Time: 0:19:06 Iter: 1800, Train Loss: 0.08, Train Acc: 97.66%, Val Loss: 0.38, Val Acc: 91.36%, Time: 0:20:13 * Iter: 1900, Train Loss: 0.089, Train Acc: 98.44%, Val Loss: 0.39, Val Acc: 90.18%, Time: 0:21:20 Epoch: 6 Iter: 2000, Train Loss: 0.092, Train Acc: 96.88%, Val Loss: 0.36, Val Acc: 91.42%, Time: 0:22:27 * Iter: 2100, Train Loss: 0.062, Train Acc: 98.44%, Val Loss: 0.39, Val Acc: 90.56%, Time: 0:23:34 Iter: 2200, Train Loss: 0.053, Train Acc: 98.44%, Val Loss: 0.39, Val Acc: 90.02%, Time: 0:24:41 Iter: 2300, Train Loss: 0.12, Train Acc: 96.09%, Val Loss: 0.37, Val Acc: 90.84%, Time: 0:25:48 Epoch: 7 Iter: 2400, Train Loss: 0.014, Train Acc: 100.00%, Val Loss: 0.41, Val Acc: 90.38%, Time: 0:26:55 Iter: 2500, Train Loss: 0.14, Train Acc: 96.88%, Val Loss: 0.37, Val Acc: 91.22%, Time: 0:28:01 Iter: 2600, Train Loss: 0.11, Train Acc: 96.88%, Val Loss: 0.43, Val Acc: 89.76%, Time: 0:29:08 Iter: 2700, Train Loss: 0.089, Train Acc: 97.66%, Val Loss: 0.37, Val Acc: 91.18%, Time: 0:30:15 Epoch: 8 Iter: 2800, Train Loss: 0.0081, Train Acc: 100.00%, Val Loss: 0.44, Val Acc: 90.66%, Time: 0:31:22 Iter: 2900, Train Loss: 0.017, Train Acc: 100.00%, Val Loss: 0.44, Val Acc: 89.62%, Time: 0:32:29 Iter: 3000, Train Loss: 0.061, Train Acc: 96.88%, Val Loss: 0.43, Val Acc: 90.04%, Time: 0:33:36 No optimization for a long time, auto-stopping...
在验证集上的最佳效果为91.42%,经过了8轮迭代停止,速度相比CNN慢很多。
准确率和误差如图所示:
运行 python run_rnn.py test 在测试集上进行测试。
在测试集上的准确率达到了94.22%,且各类的precision, recall和f1-score,除了家居这一类别,都超过了0.9。 从混淆矩阵可以看出分类效果非常优秀。 对比两个模型,可见RNN除了在家居分类的表现不是很理想,其他几个类别较CNN差别不大。 还可以通过进一步的调节参数,来达到更好的效果。
为方便预测,repo 中 predict.py 提供了 CNN 模型的预测方法.
如果遇到文件不能下载或其他产品问题,请添加管理员微信:ligongku001,并备注:产品反馈
评论(0)