0 有用
6 下载

SeetaFace2 人脸识别引擎

文件列表(压缩包大小 2.09M)

免费

概述

SeetaFace2

1. 简介

SeetaFace2 人脸识别引擎包括了搭建一套全自动人脸识别系统所需的三个核心模块,即:人脸检测模块 FaceDetector、面部关键点定位模块 FaceLandmarker 以及人脸特征提取与比对模块 FaceRecognizer。 已经两个辅助模块 FaceTrackerQualityAssessor 用于人脸跟踪和质量评估。

SeetaFace2 采用标准 C++ 开发,全部模块均不依赖任何第三方库,支持 x86 架构(Windows、Linux)和 ARM 架构(Android)。SeetaFace2 支持的上层应用包括但不限于人脸门禁、无感考勤、人脸比对等。

SeetaFace2 是面向于人脸识别商业落地的里程碑版本,其中人脸检测模块在 FDDB 上的 100 个误检条件下可达到超过 92% 的召回率,面部关键点定位支持 5 点和 81 点定位,1 比 N 模块支持数千人规模底库的人脸识别应用。

与 2016 年开源的 SeetaFace 1.0 相比,SeetaFace2 在速度和精度两个层面上均有数量级的提升。

知人识面辩万物,开源赋能共发展。SeetaFace2 致力于 AI 赋能发展,和行业伙伴一起共同推进人脸识别技术的落地。

2. 编译

2.1 编译依赖

  • 编译工具
    • For linux
      • GNU Make 工具
      • GCC 或者 Clang 编译器
    • For windows
      • MSVC 或者 MinGW.
    • CMake
  • 依赖库
    • [可选] OpneCV 仅编译例子时需要
  • 依赖架构
    • CPU 支持 SSE2 和 FMA [可选](x86)或 NENO(ARM)支持-

2.2 编译参数

  • BUILD_DETECOTOR: 是否编译人脸检测模块。ON:打开;OFF:关闭
  • BUILD_LANDMARKER: 是否编译面部关键点定位模块。ON:打开;OFF:关闭
  • BUILD_RECOGNIZER: 是否编译人脸特征提取与比对模块。ON:打开;OFF:关闭
  • BUILD_EXAMPLE: 是否编译例子。ON:打开;OFF:关闭,打开需要预先安装 OpneCV
  • CMAKE_INSTALL_PREFIX: 安装前缀
  • SEETA_USE_FMA: 是否启用 FMA 指令。默认关闭。只有目标是x86架构是起作用
  • SEETA_USE_SSE2: 是否启用 SSE2 指令。window 和 unix 默认为 ON,其它默认为 OFF。

3. 目录结构

|-- SeetaFace2<br>
    |-- documents(SDK 接口说明文档)  
    |-- example(C++ 版本 SDK 示例代码)  
    |-- FaceDetector(人脸检测模块)  
    |-- FaceLandmarker(特征点定位模块)  
    |-- FaceRecognizer(人脸特征提取和比对模块)  
    |-- SeetaNet(前向计算框架模块)  

4. 模型下载

5. 示例

5.1 本项目自带示例

example/search/example.cpp 示例展示了一套简单且完整的人脸识别的流程,包括:

  1. 预注册图像中的人脸到人脸识别底库中(example 中默认注册了"1.jpg"中的人脸);
  2. 打开摄像头,检测摄像头画面中的人脸;3.对检测到人脸进行识别,确定所属人脸的身份。

测试者如果想在底库中成功识别出自己的人脸,需要在example.cpp的底库注册列表部分添加以自己名称命名的图片(名称 + .jpg), 并把自己名称命名的图片文件拷贝到程序的运行目录下,重新编译 example 并运行程序,测试识别效果即可。

5.2 已使用本项目的其它项目

来源https://github.com/seetafaceengine/SeetaFace2

理工酷提示:

如果遇到文件不能下载或其他产品问题,请添加管理员微信:ligongku001,并备注:产品反馈

评论(1)

0/250
个性的茶壶 • 3
下载后的评价
感谢分享
2022-05-06 回复