基于PaddlePaddle的端到端图像分割套件
文件列表(压缩包大小 137.76M)
免费
概述
基于PaddlePaddle的端到端图像分割套件
PaddleSeg是基于飞桨PaddlePaddle开发的端到端图像分割开发套件,涵盖了高精度和轻量级等不同方向的大量高质量分割模型。通过模块化的设计,提供了配置化驱动和API调用两种应用方式,帮助开发者更便捷地完成从训练到部署的全流程图像分割应用。
高精度模型:基于百度自研的半监督标签知识蒸馏方案(SSLD)训练得到高精度骨干网络,结合前沿的分割技术,提供了50+的高质量预训练模型,效果优于其他开源实现。
模块化设计:支持15+主流 分割网络 ,结合模块化设计的 数据增强策略 、骨干网络、损失函数 等不同组件,开发者可以基于实际应用场景出发,组装多样化的训练配置,满足不同性能和精度的要求。
高性能:支持多进程异步I/O、多卡并行训练、评估等加速策略,结合飞桨核心框架的显存优化功能,可大幅度减少分割模型的训练开销,让开发者更低成本、更高效地完成图像分割训练。
模型\骨干网络 | ResNet50 | ResNet101 | HRNetw18 | HRNetw48 |
---|---|---|---|---|
ANN | ✔ | ✔ | ||
BiSeNetv2 | - | - | - | - |
DANet | ✔ | ✔ | ||
Deeplabv3 | ✔ | ✔ | ||
Deeplabv3P | ✔ | ✔ | ||
Fast-SCNN | - | - | - | - |
FCN | ✔ | ✔ | ||
GCNet | ✔ | ✔ | ||
GSCNN | ✔ | ✔ | ||
HarDNet | - | - | - | - |
OCRNet | ✔ | ✔ | ||
PSPNet | ✔ | ✔ | ||
U-Net | - | - | - | - |
U2-Net | - | - | - | - |
Att U-Net | - | - | - | - |
U-Net++ | - | - | - | - |
DecoupledSegNet | ✔ | ✔ | ||
EMANet | ✔ | ✔ | - | - |
ISANet | ✔ | ✔ | - | - |
DNLNet | ✔ | ✔ | - | - |
1.安装PaddlePaddle 版本要求
由于图像分割模型计算开销大,推荐在GPU版本的PaddlePaddle下使用PaddleSeg。推荐安装10.0以上的CUDA环境。安装教程请见PaddlePaddle官网。
2.安装PaddleSeg 支持用API调用的方式构建定制化的分割框架,灵活开发。
pip install paddleseg
3. 下载PaddleSeg仓库 支持用配置化驱动的方式完成全流程分割应用,简单快捷。
git clone https://github.com/PaddlePaddle/PaddleSeg
4. 验证安装 运行以下命令,如果可以正常进行训练,说明您已经安装成功。
python train.py --config configs/quick_start/bisenet_optic_disc_512x512_1k.yml
如果遇到文件不能下载或其他产品问题,请添加管理员微信:ligongku001,并备注:产品反馈
评论(0)